Aller au contenu principal

    Swimming speed and allocation of time during the dive cycle of Antarctic fur seals

    Demander un document de réunion
    Numéro du document:
    Bevan, R.M., Boyd, I.L., Reid, K.
    Point(s) de l'ordre du jour

    During sustained bouts of diving, predators like fur seals may adjust the time they spend diving to maximise the time they can spend foraging and minimise the time spent at the surface between dives. To examine this, swimming speeds and the time allocated to different parts of the dive cycle were measured in 10 adult female Antarctic fur seals (Arctocephalus gazella) while they were foraging at sea. Mean swimming speeds during diving ranged from 1.32 to 1.99 ms-1 and 90% of diving swimming speeds within individuals were between 1 and 2.5 ms-1. This represented a narrower range of speed than was exhibited by animals when swimming at the surface. Swimming speeds were fastest during the descent and ascent phases of dives with a reduction in speed near the bottom of the dive, when the seals were assumed to be feeding on krill. Surface interval increased as a curvilinear function of dive duration and was influenced by diving swimming speed. This relationship was, on average, close to that predicted by a model (Houston & Carbone, Behav. Ecol., 3, 255-265) which suggested that the metabolic rate was greatest during the foraging phase of dives (5.9 times predicted BMR) than during the ascent or descent (3.6 time predicted BMR). Deep diving (>30 m) and high swim speeds also incurred costs in terms of reduced foraging time and may explain why mean dive depths for individuals were within the range of 12-33 m. These data broadly support the predictions of models of diving behaviour based on balancing the supply of, and demand for, oxygen and the principles that fur seals are attempting to maximise the time they spend within the foraging area.